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Abstract

Continuous-time birth-death Markov processes serve as useful models in population biol-
ogy. When the birth-death rates are nonlinear, the time evolution of the first n order mo-
ments of the population is not closed, in the sense that it depends on moments of order
higher than n. For analysis purpose, the time evolution of the first n order moments is often
made to be closed by approximating these higher order moments as a nonlinear function of
moments up to order n, which we refer to as the moment closure function.

In this paper, a systematic procedure for constructing moment closure functions of ar-
bitrary order is presented for the stochastic logistic model. We obtain the moment closure
function by first assuming a certain separable form for it, and then matching time deriva-
tives of the exact (not closed) moment equations with that of the approximate (closed)
equations for some initial time and set of initial conditions. The separable structure ensures
that the steady-state solutions for the approximate equations are unique, positive and real,
while the derivative matching guarantees a good approximation, at-least locally in time.
Moreover, the accuracy of the approximation can be improved by increasing the order of
the approximate model.To the best of our knowledge, this paper is the first to propose a sys-
tematic procedure to construct moment closure functions of arbitrary order that guarantee
biologically meaningful equilibria.

A host of other moment closure functions previously proposed in the literature are also
investigated. Among these we show that only the ones that achieve derivative matching
provide a close approximation to the exact solution. Moreover, we improve the accuracy
of several previously proposed moment closure functions by forcing derivative matching.
However, for certain ranges of parameter models, moment closure functions that lack the
separability property lead to biologically meaningless scenarios of imaginary and even sta-
ble negative steady-states of the closed moment equations.
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1 INTRODUCTION

Continuous-time birth-death Markov processes have been extensively used for mod-
eling stochasticity in population biology (Matis and Kiffe, 2002, 1996; Matis et al.,
1998). The time evolution of these processes is typically described by a single equa-
tion for a grand probability function, where time and species populations appear as
independent variables, called the Master or Kolmogorov equation (Bailey, 1964).
However, this equation can only be solved for relatively few, highly idealized cases
and a more reasonable goal is to determine the time evolution of a few low-order
statistical moments.

In this paper, a method for estimating low-order statistical moments is introduced
for the stochastic logistic model. This model was first introduced by Barlett et al.
(1960) and is a continuous-time birth-death Markov process involving a single
specie, with birth and death rates being polynomials of order 2. Although, one can
directly use the Kolmogorov equation to derive differential equations for the time
evolution of moments of the process, in this paper we use an alternative method.
We model the stochastic logistic model as a Stochastic Hybrid System (SHS) whose
state x is the population of the specie. Then, the time evolution of the moments is
obtained using results from the SHS literature (e.g., Hespanha, 2004). Details of
the stochastic logistic model and its modeling as a SHS are presented in Section 2.
Table 1
Separable derivative-matching moment closure function ϕs

n+1(µ) for n ∈ {2,3,4}.

n = 2 n = 3 n = 4

ϕs
n+1(µ)

µ3
2

µ3
1

µ4
1 µ4

3

µ6
2

µ10
2 µ5

4

µ5
1 µ10

3

Let µm be the mth order uncentered moment of x, i.e. µm(t) = E[x(t)m] where x(t)
denotes the population of the specie at time t. We will show in Section 3 that for
the stochastic logistic model the time derivative of µm is a linear combination of
moments up to order m + 1. Hence, if one stacks all moments in an infinite vector
µ∞ = [µ1,µ2, · · · ]T , its dynamics can be written as

µ̇∞ = A∞µ∞, (1)

for some infinite matrix A∞. As the above infinite dimensional system cannot be
solved analytically, we truncate (1) by creating a vector µ = [µ1, . . . ,µn]T , where n
is the order of the truncation. Its dynamics, given by

µ̇ = Aµ +Bµn+1 (2)

for some matrices A and B is not closed, in the sense that the time evolution of
the vector µ depends on the n+1th order moment µn+1. For analysis purposes, we
close the above system by approximating µn+1 as a nonlinear function ϕn+1(µ) of
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moments up to order n. This procedure is commonly referred to as moment closure.
We call ϕn+1(µ) as the moment closure function for µn+1. Let ν = [ν1, . . . ,νn]T

denote the state of the new closed system. Then, its dynamics is given by

ν̇ = Aν +Bϕn+1(ν) (3)

and is referred to as the truncated moment dynamics. We denote the states of (2)
and (3) using different symbols because µ refers to the actual moment dynamics
whereas ν to an approximated moment dynamics.

In Section 4, we consider moment closure functions which have the following sep-
arable form:

ϕ
s
n+1(µ) = µ

γ1
1 µ

γ2
2 . . .µ

γn
n

for appropriately chosen constants γm ∈R. These constants are obtained by match-
ing time derivatives of µn+1 and ϕs

n+1(µ) in (2) and (3) respectively, at some initial
time t0, for a deterministic initial condition x(t0) = x0 with probability one. The
reason for this lies in the fact that the class of deterministic distributions forms a
natural basis for the infinite dimensional space containing the vector µ∞. We refer
to this moment closure as the separable derivative-matching moment closure. We
show that for all n ≥ 2, this determines the function ϕs

n+1 uniquely, which is in-
dependent of the birth and death rates. Table 1 shows the functions ϕs

n+1 that we
obtained for truncations of order n = 2, 3 and 4. The striking feature of the sepa-
rable derivative-matching moment closure is that the accuracy of the approximate
moment dynamics improves by increasing order of truncation and the dependence
of higher order moments on lower order ones is consistent with x(t) being lognor-
mally distributed, in spite of the fact that the derivative matching procedure used to
construct ϕs

n+1 did not make any assumption on the distribution of the population.

Alternative moment closure methods which have appeared in literature typically
construct the moment closure functions ϕ by directly assuming the probability dis-
tribution to be normal (Whittle, 1957), lognormal (Keeling, 2000), poisson or bino-
mial (Nasell, 2003a). We refer to them as normal, lognormal, poisson and binomial
moment closures respectively and review them in Section 5. In Section 6, they are
compared with the separable derivative-matching moment closure. In Section 6.1
the comparisons are done based on how well the moment closure function ϕn+1(µ)
approximates µn+1. Towards that end, we introduce the error

en+1(t) := µn+1(t)−ϕn+1(µ(t)) =
∞

∑
i=0

(t− t0)i

i!
ε

i
n+1(x0)

where we expanded the error as a Taylor series with ε i
n+1(x0) defined to be

ε
i
n+1(x0) :=

diµn+1(t)
dt i

∣∣
t=t0

− diϕn+1(µ(t))
dt i

∣∣
t=t0

.
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We call ε i
n+1(x0) the ith order derivative matching error. Ideally one would like this

error to be zero but this is generally not possible. When x(t0) = x0 with probability
one, the derivative matching error is typically a polynomial in x0. The lesser the
order of this polynomial, the lesser is the error en+1(t), and hence the better is
ϕn+1(µ) in approximating µn+1.

We show that for n = 2, all the above moment closure functions perform derivative
matching except the poisson moment closure function by Nasell (2003a). This is
because, it has a 0th order derivative matching error ε0

3 (x0) which grows linearly
with x0 while for separable derivative-matching, lognormal, binomial and normal
moment closure functions the 0th order error is always zero. Hence, Nasell’s pois-
son moment closure function exhibits a larger initial error than the others. We pro-
pose an alternative poisson moment closure function, for which ε0

3 (x0) = 0, and
show that it performs better than the one proposed by Nasell (2003a).

Although the above moment closures provide good estimates for a second order of
truncation (n = 2), it is typically beneficial to consider n ≥ 3 because they lead to
better moment approximations and reduce the errors by a few orders of magnitude.
However, for distributions like the normal and the lognormal, which are charac-
terized by less than 2 parameters, n ≥ 3 typically leads to multiple normal and
lognormal moment closure functions. In Section 6.1.2 we illustrate how derivative
matching can be used as a tool for gauging performances of these multiple moment
closure functions and choosing the ones among them that yield the least derivative
matching errors.

In particular, we show that among the moment closure functions consistent with the
lognormal distribution, the separable derivative-matching moment closure function
yields the least order polynomial for the derivative matching error, and hence, ex-
hibits the best performance. Based on derivative matching we also propose families
of normal moment closure functions which provide good approximations for µn+1.
Towards the end, for n = 3, we propose a new moment closure function, for which,
unlike the lognormal or normal moment closure functions both the 0th and 1st order
derivative matching error are zero, and hence, provides the best estimates for µ4 as
compared to them, at least locally in time.

In Section 6.2 comparisons are done based on the steady-state solutions of the trun-
cated moment dynamics (3). We show that the separable derivative matching mo-
ment closure, always yields a unique non-trivial positive real steady-state ∀n∈N≥2.
Thus, it is preferable to the other moment closures techniques which lack the sep-
arable structure and exhibit spurious, imaginary and even stable negative steady-
states, which would be biologically meaningless.
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2 Stochastic Logistic Model

2.1 Model formulation

The stochastic logistic model is the stochastic birth-death analogous model of the
well-known deterministic Verhulst-Pearl equations (Pielou, 1977) and has been ex-
tensively used for modeling stochasticity in population biology (Matis and Kiffe,
2002, 1996; Matis et al., 1998). For this continuous-time birth-death Markov pro-
cess, the conditional probabilities of a unit increase and decrease, respectively, in
an “infinitesimal” time interval (t, t +dt] is given by

P{x(t +dt) = x+1|x(t) = x}=

{
η(x)dt, ∀ x ≤U
0, otherwise

P{x(t +dt) = x−1|x(t) = x}= χ(x)dt,

where x(t) ∈ N represents the population size at time t,

η(x) := a1x−b1x2 > 0, χ(x) := a2x+b2x2 > 0, ∀x ∈ (0,U) (4)

and

U := a1/b1 ∈ N, a1 > 0, a2 > 0, b1 > 0, b2 ≥ 0.

We assume that the initial condition satisfies x(t0)∈{1,2, . . . ,U}, and hence, x(t)∈
{0,1, . . . ,U}, ∀t ∈ [0,∞) with probability one. We call U the population limit.

2.2 Stationary and Quasi-Stationary Distributions

Since the birth and death rates are zero for x = 0 (η(0) = χ(0) = 0) we have that
x = 0 is an absorbing state and eventual convergence to the origin is certain. Thus,
the stationary distribution is degenerate with probability one at the origin. However,
though out this paper we assume the mean time to extinction to be very large,
in which case there exists a “quasi-stationary” distribution (Nasell, 2001). Barlett
et al. (1960) shows that a good approximate for P̄x (the probability that x = x at
“quasi-equilibrium”) can be numerically obtained using the following recurrence
relationship

χ(x)P̄x = η(x−1)P̄x−1, ∀x ∈ {2,3, . . . ,U}. (5)
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2.3 Transient Distributions

Ideally one would like to determine the exact probability distribution of x(t) at any
time t. It can be shown that the probability Px(t) that x(t) = x satisfies the following
differential equations

Ṗ0(t) = χ(1)P1(t) (6a)
Ṗ1(t) = χ(2)P2(t)− [η(1)+ χ(1)]P1(t) (6b)
Ṗx(t) = χ(x+1)Px+1(t)− [η(x)+ χ(x)]Px(t)+η(x−1)Px−1(t), (6c)

...
ṖU(t) =−χ(U)PU(t)+η(U −1)PU−1(t) (6d)

(Bailey, 1964). These differential equations are commonly referred to as the Master
or Kolmogorov equations. If the population limit U is small, the above system of
equations can be solved numerically. However, for large U , a more reasonable goal
(and one that is of primary interest in applications) is to determine the evolution of
the some lower-order moments of x(t).

3 Time Evolution of Moments

3.1 Modeling the Stochastic Logistic Model

To model the time evolution of x(t), we consider a special class of systems known
as Stochastic Hybrid Systems (SHS). These systems were introduced by Hespanha
and Singh (2005) to model the stochastic time evolution of the populations of differ-
ent species involved in a chemical reaction. More specifically, to fit the framework
of our problem, these system are characterized by two reset maps:

x 7→ φ1(x) := x+1, x 7→ φ2(x) := x−1 (7)

one corresponding to a birth and the other to a death, with associated transition
intensities given by

λ1(x) := η(x), λ2(x) := χ(x). (8)

Between births and deaths the population remains constant and thus ẋ = 0. In
essence, whenever a “birth event” or a “death event” takes place, the corresponding
reset φi(x) is “activated” and x is reset accordingly, furthermore, the probability of
the activation taking place in an “infinitesimal” time interval (t, t +dt] is determined
by the associated transition intensities λi(x)dt.

6



3.2 Moment Dynamics

Given m ∈ {1,2, . . .}, we define the mth order (uncentered) moment of x to be

µm(t) =
∞

∑
x=1

xmPx(t) := E[x(t)m], ∀t ≥ 0. (9)

The time evolution of moments is given by the following result, which is a straight-
forward application of Theorem 1 in Hespanha (2004) to the above SHS.

Theorem 1: The time evolution of µm is given by

dµm

dt
= E

[
2

∑
i=1

[(φi(x))m−xm]λi(x)

]
. (10)

�

Using the above Theorem, we show in Appendix A that one can conclude

µ̇m =
2

∑
p=1

m+1

∑
r=1

Cm
m+p−r f (m+ p− r, p)µr, (11)

where we define Cm
j and f ( j, p) as follows 3 ∀ j, m, p ∈ N.

Cm
j :=

{
m!

(m− j)! j! m≥ j ≥ 0

0 m < j
(12)

f ( j, p) :=


0 j = 0
a1 +(−1) ja2 j > 0, p = 1
−b1 +(−1) jb2 j > 0, p = 2.

(13)

One can see from the right-hand-side of (11), that the time derivative of µm is a
linear combination of the moments µr, up to order r = m+1. Hence, if one stacks
all moments in an infinite vector µ∞ = [µ1,µ2, · · · ]T , its dynamics can be written as

µ̇∞ = A∞µ∞, (14)

for some infinite matrix A∞. Let µ = [µ1,µ2, . . . ,µn]T ∈ Rn contains the top n ele-
ments of µ∞. Then, using (11) the evolution of µ is given by

µ̇ = Aµ +Bµn+1, (15)

3 n! denotes the factorial of n.
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for some n×n and n×1 matrices A and B which have the following structure

A =



∗ ∗ 0 . . . 0

∗ ∗ ∗ . . . 0
...

...
... . . . ...

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗


, B =



0

0
...

0

∗


, (16)

where the ∗ denotes non-zero entries. Our goal is to approximate (15) by a finite-
dimensional nonlinear ODE of the form

ν̇ = Aν +Bϕn+1(ν), ν = [ν1,ν2, . . . ,νn]T (17)

where the map ϕn+1 : Rn → R should be chosen so as to keep ν(t) close to µ(t).
This procedure is commonly referred to as moment closure. We call (17) the trun-
cated moment dynamics and ϕn+1(µ) the moment closure function for µn+1.

When a sufficiently large but finite number of derivatives of µ(t) and ν(t) match
point-wise, then, the difference between solutions to (15) and (17) remains close
on a given compact time interval. This follows from a Taylor series approximation
argument. To be more precise, for each δ > 0 and integer N, there exists T ∈R, for
which the following result holds: Assume that for every t0 ≥ 0,

µ(t0) = ν(t0) and
diµ(t)

dt i

∣∣
t=t0

=
diν(t)

dt i

∣∣
t=t0

, ∀i ∈ {1, . . . ,N} (18)

where diµ(t)
dt i and diν(t)

dt i represent the ith time derivative of µ(t) and ν(t) along the
trajectories of system (14) and (17) respectively. Then,

‖µ(t)−ν(t)‖ ≤ δ , ∀t ∈ [t0,T ], (19)

along solutions of (14) and (17), where µ denote the first n elements of µ∞. In the
next section we use (18) to construct moment closure functions ϕn+1(µ).

4 Separable Derivative-Matching Moment Closures

In this section we construct truncated moment dynamics (17) for the stochastic lo-
gistic model using (18). After replacing (15) and (17) in (18), equality (18) becomes
a PDE on ϕn+1. We will seek for solutions ϕn+1 to this PDE that have the following
separable form

ϕ
s
n+1(µ) =

n

∏
m=1

µm
γm (20)
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for appropriately chosen constants γm ∈ R. As we will see in Section 6.2, this sep-
arable structure ensures that the steady-state solutions for the truncated moment
dynamics (17) are unique, positive real, and hence, biologically meaningful. In the
sequel we refer to such ϕs

n+1(µ) as a separable derivative-matching moment clo-
sure function for µn+1.

One can see that the infinite vector µ∞ ∈Ω∞ can be expressed as

µ∞ =


E[x(t)]

E[x(t)2

E[x(t)3]
...

 =
∞

∑
x=1


x

x2

x3

...

Px(t).

Hence, the infinite vectors µ∞ = [x,x2,x3, . . .]T , which corresponds to a determin-
istic distribution, i.e. x(t) = x with probability one, form a natural basis for Ω∞. In
particular, we will find constants γm which satisfy (18) for each vector µ∞(t0) be-
longing to this basis, i.e. for the class of deterministic initial conditions. However,
often it is not possible to find γm for which (18) holds exactly. We will therefore
relax this condition and simply demand the following

µ(t0) = ν(t0) and
diµ(t)

dt i

∣∣
t=t0

=
diν(t)

dt i

∣∣
t=t0

+E[εi(x(t0))], (21)

∀i ∈ {1,2}, where each element of the vector εi(x(t0)) is a polynomial in x(t0).
One can think of (21) as an approximation to (18) that is valid as long as diµ (t)

dt i |t=t0
dominates E[εi(x(t0))].

The following theorem summarizes the main result, the proof of which is given in
Appendix B.

Theorem 2: Let γm, m ∈ {1, . . . ,n} be chosen as

γm = (−1)n−mCn+1
m . (22)

Then, for every deterministic initial condition ν(t0) = µ(t0) = [x0, . . . ,xn
0]

T which
corresponds to x(t0) = x0 with probability one, we have

dµ(t)
dt

∣∣
t=t0

=
dν(t)

dt

∣∣
t=t0

(23a)

d2µ(t)
dt2

∣∣
t=t0

=
d2ν(t)

dt2

∣∣
t=t0

+ ε2(x0), (23b)

where diµ(t)
dt i and diν(t)

dt i represent the ith time derivative of µ(t) and ν(t) along the
trajectories of the systems (14) and (17), respectively, and the nth element of the
vector ε2(x0) is a polynomial in x0 of order 2 with all other elements being zero. �
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Remark 1. Using (11) it can be shown that d2µn(t)
dt2 is a linear combination of mo-

ments of x up to order n+2. Thus, d2µn(t)
dt2 |t=t0 is a polynomial in x0 of order n+2,

and hence, for 4 x0 >> 1, εn
2 (x0)/

d2µn(t)
dt2 |t=t0 = O(x−n

0 ), where εn
2 (x0) is the nth

element of ε2(x0). Hence, the term d2µn(t)
dt2 |t=t0 dominates εn

2 (x0) by x−n
0 . �

Remark 2. It can be verified that the separable derivative-matching moment clo-
sures also matches derivatives of order higher than 2 in (23) with small errors. For
example for n ∈ {2,3,4} and i ∈ {2, . . . ,9}, we have

dµ(t)
dt

∣∣
t=t0

=
dν(t)

dt

∣∣
t=t0

(24a)

diµ(t)
dt i

∣∣
t=t0

=
diν(t)

dt i

∣∣
t=t0

+ εi(x0), (24b)

where the mth element of εi(x0) is a polynomial in x0 of order m− n + i, for m−
n + i ≥ 2 and equal to zero otherwise. We conjecture that the above equality holds
∀n ∈ N and ∀i ∈ N but we only verified it for n up to 4 and i up to 9. As above, the
elements of vector diµ(t)

dt i |t=t0 dominate the corresponding elements of εi(x0) by x−n
0 ,

and hence, with increasing n, the truncated moment dynamics ν(t) should provide
a more accurate approximations to the lower order moments µ(t). �

5 Distribution based Moment Closures

Most moment closure techniques that appeared in the literature start by assuming
a specific class of distributions D for the population, and use this assumption to
express higher order moments as a function of the lower order ones. We refer to
such a moment closure function as being consistent with the distribution D and
define them as follows.

Definition : Let D be a class of distributions parameterized by m parameters (q1, . . . ,qm)∈
Q, with the kth order moment µk given in terms of the q1, . . . ,qm as follows

µk = fk(q1, . . . ,qm), ∀k ∈ {1,2, . . .}. (25)

The moment closure function ϕD
n+1(µ) for µn+1 is said to be consistent with the

distribution D if, for every (q1, . . . ,qm) ∈Q, one has that

µn+1 = fn+1(q1, . . . ,qm) = ϕ
D
n+1(µ) (26)

4 O(.) denotes order of.
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Table 2
Unique Moment Closure Functions for the mth order truncation (n = m) and different dis-
tributions D.

D m Unique moment closure function

Normal 2 ϕ
g
3 (µ) = 3µ2µ1−2µ3

1

Lognormal 2 ϕ l
3(µ) =

µ3
2

µ3
1

Poisson 1 ϕ
p
2 (µ) = µ2

1 + µ1

Binomial 2 ϕb
3 (µ) = 2

(µ2−µ2
1 )2

µ1
− (µ2−µ2

1 )+3µ1µ2−2µ3
1

where

µ :=


µ1
...

µn

 =


f1(q1, . . . ,qm)

...

fn(q1, . . . ,qm)

 . (27)

For well known classes of distributions — such as lognormal, normal, poisson, or
binomial — we simply say that ϕD

n+1 is the lognormal, normal, poisson, or binomial
moment closure function.

5.1 Techniques for obtaining ϕD
n+1

Generically, when the dimension m of the parameter space Q is the same as the
dimension n of the domain of the moment closure function ϕD

n+1(µ), the functional
equation (26)–(27) in the “unknown” ϕD

n+1(·) has a unique solution 5 . In fact, to de-
termine ϕD

n+1(µ) one can start by solving (27) for q1, . . . ,qm in terms of µ1, . . . ,µm,
and then substituting these back in (26) to obtain a unique moment closure func-
tion ϕD

n+1(·). As we choose D to be normal (Whittle, 1957), log-normal (Keeling,
2000), poisson, or binomial (Nasell, 2003a), this procedure results in the different
moment closure functions shown in Table 2.

Difficulties arise when the dimension m of the parameter space Q is strictly smaller
than the dimension n of the domain of the moment closure function ϕD

n+1(µ), be-
cause in this case the functional equation (26)–(27) does not have a unique solu-
tion 6 and one can find infinitely many moment closure functions consistent with

5 The reader is invited to convince herself of this by imagining that all functions are locally
linear, in which case ϕD

n+1(µ) is represented by a vector with n unknowns. Since (26) must
hold for a (local) basis of Q, we have exactly m equations to determine the n = m unknowns.
6 In contrasts to the previous case, we now have n unknowns to represent the local lin-
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the same family of distributions. However, there is a strong incentive to consider
this case because, as well shall see shortly, large values for n generally lead to sig-
nificantly more accurate moment closures. In the sequel, we illustrate some options
for moment closures with n > m,

Example 1: Consider the class of poisson distributions characterized by their ex-
pected value θ (m = 1). Their moments are given by

µ1 = f1(θ) := θ

µ2 = f2(θ) := θ(1+θ)

µ3 = f3(θ) := θ(1+3θ +θ
2), . . .

Nasell (2003a) proposed the following poisson moment closure function for n = 2:

ϕ
p1
3 (µ) = µ1 +3µ1µ2−2µ

3
1 , (28)

for which it is straightforward to verify that (26)–(27) holds because

µ3 = θ(1+3θ +θ
2) = ϕ

p1
3 (µ), µ =

[
θ , θ(1+θ)

]T
.

However, an alternative choice for the poisson moment closure function that also
satisfies (26)–(27) is given by

ϕ
p2
3 (µ) = µ2−µ

2
1 +3µ1µ2−2µ

3
1 , (29)

which, as we will see in the next section, performs better that (28). The explanation
for this lies in the fact that (29) has better derivative matching properties than (28),
in the sense of (21). In the sequel we refer to (28) and (29) as the Nasell-poisson
and new-poisson moment closure function, respectively.

Example 2: Consider now the class of normal distributions parameterized by their
mean ω and variance σ2 (m = 2). Their moments are given by

µ1 = f1(θ ,σ) := ω

µ2 = f2(θ ,σ) := ω
2 +σ

2

µ3 = f3(θ ,σ) := ω(ω2 +3σ
2)

µ4 = f4(θ ,σ) := ω
4 +6ω

2
σ

2 +3σ
4, . . .

For n = 3, any function of the following form is a normal moment closure function
for µ4

ϕ4(µ) := 4µ1µ3 +3µ
2
2 −12µ2µ

2
1 +6µ

4
1 +h(µ1,µ2−µ

2
1 ,µ3−3µ2µ1 +2µ

3
1 )

earization of ϕD
n+1(µ) but a (local) basis of Q only provides m < n equations.

12



where h(x,y,z) is any function with the property that h(x,y,0) = 0. To verify that
this is so, we note that (26)–(27) holds because for

µ =
[
ω, ω

2 +σ
2, ω(ω2 +3σ

2)
]T

,

we obtain h(µ1,µ2−µ2
1 ,µ3−3µ2µ1 +2µ3

1 ) = h(ω,σ2,0) = 0 and therefore

ϕ4(µ) = ω
4 +6ω

2
σ

2 +3σ
4 = µ4.

Example 3: Finally consider the class of lognormal distributions characterized by
the parameters α > 0, β > 0 (m = 2), whose moments are given by

µk = fk(α,β ) := α
k
β

k2
, ∀k ∈ {1,2, · · ·}. (30)

For every n ≥ 2, the separable derivative-matching moment closure functions de-
fined by (20), with coefficient given by (22) in Theorem 2 are lognormal moment
closure functions for µn+1. We can verify this by noting that (26)–(27) holds be-
cause, from (30) and (B.1) used in the proof of Theorem 2 (Appendix B) we con-
clude that

ϕ
s
n+1(µ) = α

(∑n
m=1 γmm)

β
(∑n

m=1 γmm2)

= α
(∑n

m=1 γmCm
1 )

β
(∑n

m=1 γm{2Cm
2 +Cm

1 }),

= α
n+1

β
2Cn+1

2 +Cn+1
1 = α

n+1
β

(n+1)2
= µn+1,

where we used the facts that k = Ck
1, k2 = 2Ck

2 +Ck
1, ∀k ∈ N.

5.2 Cumulant closure functions

Most of the literature on moment closure prefers to work with a vector κ = [κ1, . . . ,κn]
where κn(t) is the nth order cumulant 7 , instead of the previously introduced vector
µ of uncentered moments in (15). Then, instead of doing moment closure one per-
forms cumulant closure by approximating κn+1 by a nonlinear function φn+1(κ)
of κ1, . . . ,κn, which we refer to as the cumulant closure function. The disadvan-
tage of working with κ instead of µ is that the dynamics of κ is always nonlinear.
However, for ease of comparison with other papers, we provide in Table 2 the cu-
mulant closure functions corresponding to the different moment closure functions

7 The nth order cumulant, κn is given as follows in terms of the uncentered moments

κ1 = µ1, κ2 = µ2−µ
2
1

κ3 = µ3−3µ1µ2 +2µ
3
1 , κ4 = µ4−4µ1µ3−3µ

2
2 +12µ2µ

2
1 −6µ

4
1 , . . .

13



Table 3
Moment Closure Functions (MCF) for second order truncation (n = 2) and corresponding
Cumulant Closure Functions (CCF) for µ3 and κ3, respectively, corresponding to the differ-
ent Moment Closure Techniques (MCT) discussed in this paper. SDM refers to separable
derivative-matching.

MCT MCF CCF

SDM ϕs
3(µ) =

µ3
2

µ3
1

φ s
3(κ) = 3

κ2
2

κ1
+

κ3
2

κ3
1

Normal ϕ
g
3 (µ) = 3µ2µ1−2µ3

1 φ
g
3 (κ) = 0

Lognormal ϕ l
3(µ) =

µ3
2

µ3
1

φ l
3(µ) = 3

κ2
2

κ1
+

κ3
2

κ3
1

Nasell-Poisson ϕ
p1
3 (µ) = µ1 +3µ1µ2−2µ3

1 φ
p1
3 (κ) = κ1

New-Poisson ϕ
p2
3 (µ) = µ2−µ2

1 +3µ1µ2−2µ3
1 φ

p2
3 (κ) = κ2

Binomial ϕb
3 (µ) = 2

(µ2−µ2
1 )2

µ1
− (µ2−µ2

1 )+3µ1µ2−2µ3
1 φ b

3 (µ) = 2
κ2

2
κ1
−κ2

discussed so far for n = 2. We use superscripts s, l, g, p1, p2 and b to denote sep-
arable derivative-matching, lognormal, normal, Nasell-poisson, new-poisson and
binomial moment closure functions, respectively.

6 Comparison of Moment closures

In this section, we introduce two criteria to compare the different moment closure
techniques. The first criterion is the error

en+1(t) := µn+1(t)−ϕn+1(µ(t)) =
∞

∑
i=0

(t− t0)i

i!
ε

i
n+1(x0), (31)

where

ε
i
n+1(x0) :=

diµn+1(t)
dt i

∣∣
t=t0

− diϕn+1(µ(t))
dt i

∣∣
t=t0

. (32)

We call ε i
n+1(x0) the derivative matching error. Ideally, one would like to have

ε i
n+1(x0) = 0, but as already pointed out in Section 4, this is generally not possible.

With deterministic initial conditions µ∞(t0) = [x0,x2
0, . . .]

T as in Theorem 2, the
derivative matching error is typically a polynomial in x0. The lesser the order of
this polynomial, the better is ϕn+1(µ) in approximating µn+1.

The second criterion is the steady-state solution of the truncated moment dynamics
(17). In particular, we are interested in determining if there exists a unique non-
trivial positive real steady-state which is physically meaningfull. This is important,

14



because it is well-known that normal moment closures can have spurious, imagi-
nary and sometimes even stable negative steady-states, which lead to biologically
meaningless solutions (Keeling, 2000).

6.1 Derivative Matching Error

6.1.1 Moment Closures for n = 2

We recall from Table 3 that ϕ l
3(µ) = ϕs

3(µ), and therefore we do not need to dis-
cuss lognormal moment closure separately. By substituting ϕs

3(µ), ϕ
g
3 (µ), ϕ

p1
3 (µ),

ϕ
p2
3 (µ) and ϕb

3 (µ) from Table 3 in (31)–(32), one obtains the corresponding deriva-
tive matching errors, which will be denoted using the appropriate superscripts.

Using Table 3 and symbolic manipulation in Mathematica, we can show that

s
ε

0
3 (x0) = g

ε
0
3 (x0) = p2

ε
0
3 (x0) = b

ε
0
3 (x0) = 0 (33a)

p1
ε

0
3 (x0) =−x0. (33b)

∗
ε

i
3(x0) ∈ Px0(i+1), ∗= {s,g, p1, p2,b}, ∀i ∈ {1,2, . . .} (33c)

where Px0( j) denotes the set of polynomials in x0 of order j. Since p1ε0
3 (x0) =−x0,

the Nasell-poisson moment closure function will have a large initial error, espe-
cially for large initial conditions, when compared to all other moment closure func-
tions. For all, i ∈ {1,2, . . .}, all of these moment closure functions match deriva-
tives, with the derivative matching error being of the same order in x0. The simu-
lation results discussed below show that with the exception of Nasell-poisson mo-
ment closure function, which consistently provides the worst estimates, all other
moment closure functions perform fairly well.

Example: We consider the stochastic logistic model with

a1 = .30, a2 = .02, b1 = .015, b2 = .001, (34)

which is used by Matis et al. (1998) to model the population dynamics of the
African Honey Bee. Using (17) with the matrices A and B computed in (11), we
have the following truncated moment dynamicsν̇1

ν̇2

 =

0.28 −0.016

.32 .546

ν1

ν2

+

 0

−0.032

ϕ3(ν).

The time evolution of the moments corresponding to different moment closure tech-
niques is obtained by substituting the appropriate moment closure function from
Table 3 in place of ϕ3(ν). Figure 1 plots the different errors (31) during the time
interval [0,2.5] for x0 = 5. The error is approximated by the first nine terms of
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Fig. 1. Evolutions of the error en+1 in (31) for the different moment closure techniques in
Table 3, with parameters as in (34) and x0 = 5.

the series in (31). The letters s, g, p1, p2 and b are used to denote the errors cor-
responding to separable derivative-matching, normal, Nasell-poisson, new-poisson
and binomial moment closure functions, respectively. In order to evaluate the per-
formance of these moment closures techniques past the initial period, we also com-
pute the exact evolution of the moments. This is only possible because the popu-
lation limit U = 25 is small and one can obtain the exact solution by numerically
solving the Kolmogorov equation (6). Figure 2 contains plots of the mean and vari-
ance errors, respectively, for the different moment closure functions with x0 = 5 and
x0 = 20. The letters s, g, p1, p2 and b are used to denote the errors corresponding to
separable derivative-matching, normal, Nasell-poisson, new-poisson and binomial
moment closure functions, respectively. For x0 = 20 the binomial moment closure
function provides the best estimate both initially and at steady-state, whereas for
x0 = 5 the new-poisson moment closure function does best initially, but the bino-
mial moment closure function continues to provide the most accurate steady-state
estimate. As one would expect from (33), the Nasell-poisson moment closure func-
tion performs the worst.

6.1.2 Moment Closures for n≥ 3

All distributions D discussed in Section 5 are characterized by at most 2 parame-
ters (m≤ 2), hence the corresponding distribution-based moment closure functions
ϕD

n+1 are not unique for n≥ 3. In this section we illustrate for lognormal and normal
moment closures, how derivative matching can be used as a tool for gauging their
performances and choosing the ones that yield the least derivative matching errors.
We also propose a new moment closure function for n = 3, which as we will see
guarantees better approximation at least locally in time, as compared to other ones.
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(d) variance error for x0 = 20

Fig. 2. Evolutions of the mean error µ1−ν1 and of the variance error (µ2−µ2
1 )−(ν2−ν2

1 )
for the different moment closures in Table 3 for n = 2, with parameters as in (34) and x0 = 5
(left) x0 = 20 (right).

Lognormal moment closure: One can see from Example 3 of Section 5, that a
family of lognormal moment closure functions for µn+1 is given by

ϕ
l
n+1(µ) = µ

t1
1 µ

t2
2 . . .µ

tn
n ,

n

∑
m=1

Cm
1 tm = Cn+1

1 ,
n

∑
m=1

Cm
2 tm = Cn+1

2 . (35)

The derivative matching errors for these moment closure functions are given by

l
ε

0
n+1(x0) = 0, l

ε
i
n+1(x0) ∈ Px+0(n+ i+1−w), ∀i ∈ {1,2, . . .} (36)

where the constant w ∈ {1,2, . . . ,n} is such that

n

∑
m=1

Cm
k tm = Cn+1

k , ∀k ∈ {1, . . . ,w},

n

∑
m=1

Cm
k tm 6= Cn+1

k , ∀k ∈ {w+1, . . . ,n}

with higher values of w correspond to better approximations. From (35) and (36),
we conclude that the lognormal moment closure guarantees that w ≥ 2. But from
(B.1) we see that this can be improved and we actually set w = n for the separable
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derivatives-matching moment closure, for which

s
ε

0
n+1(x0) = 0, s

ε
i
n+1(x0) ∈ Px+0(i+1), ∀i ∈ {1,2, . . .}. (37)

Thus, the separable derivative-matching moment closure function leads to the best
estimate for µn+1, in the sense that it has the least derivative matching error among
all the moment closure functions consistent with the lognormal distribution.

Normal moment closure: We first restrict our attention to the case n = 3. We
recall from Example 2 that a family of normal moment closure functions for µ4
were given by

4µ1µ3 +3µ
2
2 −12µ2µ

2
1 +6µ

4
1 +h(µ1,µ2−µ

2
1 ,µ3−3µ2µ1 +2µ

3
1 ).

Its straight forward to see that the function h(κ1,κ2,κ3) corresponds to the cu-
mulant closer function for κ4. However, one needs to be careful in picking the
functions h. To demonstrate this we consider the following normal moment closure
functions

ϕ
g
4 (µ) = 4µ1µ3 +3µ

2
2 −12µ2µ

2
1 +6µ

4
1 (38)

ϕ
g1
4 (µ) = 4µ1µ3 +3µ

2
2 −12µ2µ

2
1 +6µ

4
1 + µ3−3µ1µ2 +2µ

3
1 (39)

ϕ
g2
4 (µ) = 4µ1µ3 +3µ

2
2 −12µ2µ

2
1 +6µ

4
1 +(µ3−3µ1µ2 +2µ

3
1 )µ1 (40)

which correspond to cumulant closure functions h(κ1,κ2,κ3) = 0, κ3 and κ3κ1
respectively. Using symbolic manipulation in Mathematica we have the following
derivative matching errors for the normal moment closure functions (38)–(40):

∗
ε

i
4(x0) ∈ Px0(i+1), ∗= {g,g1}

g2ε
i
4(x0) ∈ Px0(i+2)

for all i ∈ {1,2, . . .} and zero for i = 0. Thus, the normal moment closure functions
(38)–(39) have derivative matching errors of the same form as (37), and provide
better approximates for µ4 as compared to (40), for which the derivative matching
errors are an order higher.

In general for n ≥ 3, a family of normal moment closure functions for µn+1 is
obtained using the cumulant closure function

κn+1 = h(κ1,κ2, . . . ,κn)

where the function h is zero if any of κ3,. . . ,κn is zero. Using symbolic manipula-
tion in Mathematica we found that choosing cumulant closure functions as

h(κ1,κ2, . . . ,κn) =
n

∑
d=3

fdκd

18



for some constants fd , typically lead to derivative matching error of the form (37)
and provides good estimates for µn+1.

Zero first-order error moment closure: We now propose a slight modification
of the normal moment closure function (38) which is given by

ϕ
z
4(µ) = 4µ1µ3 +3µ

2
2 −12µ2µ

2
1 +6µ

4
1 + µ2−µ

2
1 (41)

and corresponds to the cumulant closure function κ2 for κ4. It yields the following
derivative matching errors

z
ε

i
4(x0) = 0, i ∈ {0,1} z

ε
i
4(x0) ∈ Px0(i+1), ∀i≥ 2.

Hence, unlike the separable derivative-matching and normal moment closure func-
tions, ϕ

z
4(µ) yields zero 0th and 1st order derivative matching errors, and hence,

provides the best estimates for µ4 as compared to them, at least near t = 0.

In order to gauge the performances of the above moment closure functions we
consider the stochastic logistic model with parameters as in (34), n = 3 and x0 = 20.
We recall from Table 1 that for n = 3, we have the following separable derivative-
matching moment closure function

ϕ
s
4(µ) =

µ4
1 µ4

3

µ6
2

. (42)

Using (11), we have the following truncated moment dynamics
ν̇1

ν̇2

ν̇3

 =


0.28 −0.016 0

.32 .546 −0.032

.28 .944 .798




ν1

ν2

ν3

+


0

0

−0.048

ϕ3(ν).

Substituting the moment closer functions (38)–(42) in place of ϕ3(ν), we obtain
the corresponding approximate time evolution of moments. Figure 3 contains plots
of the mean, variance, and third cumulant errors. The letters g, g1, g2, z and s
represent these errors for the moment closure functions (38)–(42), respectively. As
expected the normal moment closure functions (38)–(39) perform much better than
the normal moment closure function (40). The separable derivative-matching mo-
ment closure function (42) also provide good estimates. One can also see that the
zero first-order error moment closure function (41), which guarantees the best ap-
proximation near t = 0 actually provides in this case the most accurate estimate for
µ4 for all time. As can be seen from Figure 2 and 3, the mean and variance errors
for x0 = 20 with n = 3 are an order of magnitude smaller as compared to the ones
with n = 2.
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Fig. 3. Evolutions of the mean error µ1−ν1, variance error (µ2−µ2
1 )−(ν2−ν2

1 ), and third
cumulant error (µ3−3µ2µ1 +2µ3

1 )− (ν3−3ν2ν1 +2ν3
1 ) for the different moment closure

functions (38)–(42) for n = 3, with parameters as in (34) and x0 = 20.

6.2 Steady-State Solutions of the Truncated Moment Dynamics

We now look at the steady-state solutions of the truncated moment dynamics (17)
for the different moment closure techniques.

6.2.1 Separable Derivative-Matching Moment closure

Consider the truncated moment dynamics of order n ∈ N≥2 with moment closure
functions as given in Table 1. From (17), at steady-state we have

0 = Aν
s(∞)+Bϕ

s
n+1(ν

s(∞)) (43)

where νs(∞) denotes the steady-state solution. Using (16) at steady-state we have

ν
s
2(∞) = c1ν

s
1(∞) (44a)

...
ν

s
n(∞) = cn−1ν

s
1(∞) (44b)
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ϕn+1(νs(∞)) = cnν
s
1(∞) (44c)

for some positive real numbers c1, . . . ,cn. Using the above equalities and Table 1
we conclude that

ϕ
s
3(ν

s(∞)) = c3
1, ϕ

s
4(ν

s(∞)) =
c4

2

c6
1

ν
s
1(∞)2, ϕ

s
5(ν

s(∞)) =
c10

1 c5
3

c10
2

, . . . (45)

for n ∈ {2,3,4, . . .} respectively. Substituting (45) in (44) yields the following
unique non-trivial solution for νs

1(∞)

ν
s
1(∞) =


c3

1
c2

n = 2

c6
1c3

c4
2

n = 3

c10
1 c5

3
c10

2 c4
n = 4

and the corresponding νs
2(∞), . . . ,νs

n(∞) can be calculated from (44). Hence, the
separable derivative-matching moment closure always yields a unique non-trivial
positive real steady-state ∀n ∈ N≥2. In terms of the parameters a1, b1, a2 and b2,
the constants c1, c2 and c3 are given as follows

c1 = K, c2 = K2 +σ
2, c3 = K3 +3Kσ

2 + σ̄σ
2

K =
a1−a2

b1 +b2
, σ

2 =
a1b2 +b1a2

(b1 +b2)2 , σ̄ =
b2−b1

b2 +b1
,

and hence,

ν
s
1(∞) =


K

1+ σ2

K2

n = 2

K
(

1+ 3σ2

K2 + σ̄σ2

K3

)(
1+ σ2

K2

)4 n = 3.

6.2.2 Other Moment closure techniques

In this section we will see that the moment closure functions which lack the “sep-
arable structure” of (20), can lead to scenarios of biologically meaningless steady-
state solutions for the truncated moment dynamics (17). Substituting the moment
closure functions from Table 2 in (43), we get the following non-trivial steady-state
solutions for n = 2 :

ν
g
1 (∞) = K

[3
4
± 1

4

(
1− 8σ2

K2

) 1
2
]

ν
p1
1 (∞) = K

[3
4
± 1

4

(
1− 8(σ2−1)

K2

) 1
2
]

21



ν
p2
1 (∞) =

[3K−1
4

± 1
4

(
(K +1)2− 8σ2

K2

) 1
2
]

ν
b
1 (∞) = K− σ2

K−1
.

From the above steady-states we conclude the following for n = 2:

(1) The binomial moment closure function leads to a unique non-trivial attracting
real steady-state, which can be negative for a range of parameters.

(2) Normal, Nasell-poison and new-poison moment closure functions, yield two
non-trivial steady-states, with the one with the− sign being a “spurious steady-
state”. Following the definition by Nasell (2003b), a steady state is “spuri-
ous”, if limM→∞ ν1(∞) 6= K, where σ2 and K are both O(M). For n = 2, all
these “spurious steady-states” happen to be unstable, and hence, the truncated
model will not converge to them.

When the parameters are chosen, such that the term under the square root
sign is negative, then both the non-trivial steady-states would be imaginary,
and hence, biologically meaningless.

In general for n ≥ 3, the normal moment closure functions introduced in Sec-
tion 6.1.2 yield K ≥ 3 non-trivial steady-states with K−1 of them being “spurious”.
For example, for n = 3, the normal and the zero first-order error moment closure
functions (38) and (41) yield 3 non-trivial steady-state solutions given as the roots
of the third order polynomials

(3c2
1 +4c2)ν1(∞)−12c1ν1(∞)2 +6ν1(∞)3 = c3,

and

(3c2
1 +4c2−1)ν1(∞)−12c1ν1(∞)2 +6ν1(∞)3 = c3− c1,

respectively, with 2 of them being “spurious”. Also for a range of parameter val-
ues, biologically meaningless scenarios of a combination of imaginary and negative
steady states can happen. On the other hand, the separable derivative-matching mo-
ment closure function with a unique non-trivial positive real steady-state ∀n ∈N≥2
has a clear advantage.

7 Conclusion and Future Work

A procedure for constructing moment closures for the stochastic logistic model
was presented. This was done by first assuming a separable form for the moment
closure function ϕn+1(ν), and then, matching its time derivatives with µn+1, at
some initial time t0. We showed that for initial conditions x(t0) = x0 with prob-
ability one, there exists a unique separable derivative-matching moment closure
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function for which the ith derivative matching error is a polynomial in x0 of order
i + 1 for all i ∈ {1,2, . . .} and zero for i = 0. Explicit formulas to construct these
moment closure functions were provided. Comparisons with alternative moment
closure techniques available in literature were carried out based on transient per-
formance and steady-state solutions of the truncated moment dynamics, which led
to the following conclusions:

(1) Derivative matching can be used as a effective tool for gauging the perfor-
mance of moment closure functions. We showed that for n = 2, with the ex-
ception of the Nasell-poisson, all other moment closure functions in Table 2
perform derivative matching and give fairly good estimates of µ3. For n ≥ 3,
we showed that among the moment closure functions consistent with the log-
normal distribution, the separable derivatives-matching moment closure func-
tion provides the best estimate for µn+1. We also proposed families of normal
moment closure functions that perform derivative matching and result in good
estimates. For n = 3, a new zero first-order error moment closure function was
also proposed which guaranteed better approximations, at least locally in time,
as compared to the other moment closure functions discussed in this paper.

(2) The separable derivative-matching moment closure, always yields a unique
non-trivial positive real steady-state ∀n ∈ N≥2, and hence, in some sense su-
perior to the other moment closures, which can have spurious, imaginary and
even stable negative steady-states.

Possible directions for future research include the development of a systematic pro-
cedure to construct moment closure functions of the form (41) which can yield zero
derivative matching errors up to any order and the extension of the results in this
paper to multi-specie birth-death Markov processes. Primary results regarding the
latter can be found in Hespanha and Singh (2005).

A Appendix

Substituting (4), (7) and (8) in (10) and doing a binomial expansion we have

dµm

dt
= E [(x+1)m−xm)η(x)+(x−1)m−xm)χ(x)]

= E

[
m

∑
j=1

Cm
j [(a1x−b1x2)+(−1) j(a2x+b2x2)]xm− j

]

= E

[
2

∑
p=1

m

∑
j=1

Cm
j f ( j, p)xm− j+p

]
(A.1)

where Cm
j and f ( j, p) are defined in (12) and (13). Using (A.1), (12) and (13) we

conclude that the evolution of µm, ∀m ∈ N, can be written as
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µ̇m =
2

∑
p=1

m

∑
j=1

Cm
j f ( j, p)µm− j+p

=
2

∑
p=1

m+p−1

∑
r=p

Cm
m+p−r f (m+ p− r, p)µr, r = m− j + p

=
2

∑
p=1

m+1

∑
r=1

Cm
m+p−r f (m+ p− r, p)µr. (A.2)

B Appendix

Proof of Theorem 2:
STEP 1: We first show that with γm chosen as the solution to the linear system of
equations

Cn+1
k =

n

∑
m=1

γmCm
k , ∀k = {1, . . . ,n}. (B.1)

equalities (23) hold. Using (15), (16) and (17) one can see that the following equal-
ities imply (23):

µn+1(t0) = ϕ
s
n+1(ν(t0)) (B.2)

dµn+1(t)
dt

∣∣
t=t0

=
dϕs

n+1(ν(t))
dt

∣∣
t=t0

+ s
ε

1
n+1(x0), (B.3)

where sε1
n+1(x0) is a polynomial in x0 of order 2.

Let γm be chosen as the solution of (B.1). We show next that equalities (B.2) and
(B.3) hold. With initial conditions starting on the set of deterministic distributions,
we have µm(t0) = xm

0 . From µ(t0) = ν(t0), (20) and (B.1) we have

µn+1(t0) = xn+1
0 = x∑

n
m=1 γmCm

1
0 = ϕ

s
n+1(µ(t0)) = ϕ

s
n+1(ν(t0))

which proves (B.2). From (A.2) we have

µ̇n+1(t) =
2

∑
p=1

n+2

∑
r=1

Cn+1
n+1+p−r f (n+1+ p− r, p)µr

µ̇n+1(t0) =
2

∑
p=1

n+2

∑
r=3

Cn+1
n+1+p−r f (n+1+ p− r, p)xr

0 + s
1ε

1
n+1(x0), (B.4)

where s
1ε1

n+1(x0) is a polynomial in x0 of order 2. Using (A.2) and (17) we have
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ν̇m =
2

∑
p=1

m+1

∑
r=1

Cm
m+p−r f (m+ p− r, p)νr, νn+1 = ϕ

s
n+1(ν). (B.5)

Thus, from (20), (B.1), (B.5) and ν(t0) = [x0, . . . ,xn
0]

T

dϕs
n+1(ν(t))

dt
=

n

∑
m=1

γmν
γ1
1 · · ·νγm−1

m · · ·νγn
n ν̇m

=
2

∑
p=1

n

∑
m=1

m+1

∑
r=1

γmν
γ1
1 · · ·νγm−1

m · · ·νγn
n Cm

m+p−r f (m+ p− r, p)νr,

dϕs
n+1(ν(t))

dt

∣∣
t=t0

=
2

∑
p=1

n

∑
m=1

m+1

∑
r=1

γmCm
m+p−r f (m+ p− r, p)x(∑n

m=1 γmm)+r−m
0

=
2

∑
p=1

n

∑
m=1

m+1

∑
r=1

γmCm
m+p−r f (m+ p− r, p)xn+1+r−m

0 .

With a change of variable q = n+1+ r−m, the last equality becomes

dϕs
n+1(ν(t))

dt

∣∣
t=t0

=
2

∑
p=1

n

∑
m=1

n+2

∑
q=n+2−m

γmCm
n+1+p−q f (n+1+ p−q, p)xq

0

=
2

∑
p=1

n+2

∑
q=3

n

∑
m=1

γmCm
n+1+p−q f (n+1+ p−q, p)xq

0 + s
2ε

1
n+1(x0), (B.6)

where s
2ε1

n+1(x0) is a polynomial in x0 of order 2. Using (B.1), equality (B.6) re-
duces to

dϕs
n+1(ν(t))

dt
|t=t0 =

2

∑
p=1

n+2

∑
q=3

Cn+1
n+1+p−q f (n+1+ p−q, p)xq

0 + s
2ε

1
n+1(x0). (B.7)

Comparing (B.7) with (B.4) one can see that (B.3) holds.

STEP 2: We now show that solution to (B.1) is unique and given by (22). Towards
that end, we observe that for all z ∈ R, one can write using binomial expansion,

[1− (1+ z)]n+1 =
n+1

∑
v=0

Cn+1
v (−1)v(1+ z)v

= 1+
n+1

∑
v=1

Cn+1
v (−1)v

v

∑
w=0

Cv
wzw. (B.8)

Equating coefficients for zs, s ∈ {1, . . . ,n} on both sides of (B.8) we have

0 =
n+1

∑
v=1

Cn+1
v (−1)vCv

s
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⇒ (−1)nCn+1
s =

n

∑
v=1

Cn+1
v (−1)vCv

s. (B.9)

Comparing (B.9) with (B.1) one can see that a solution to (B.1) will be (22). Also
the system of n linear equations (B.1) can be put into the form

C = Πγ

where γ = [γ1, . . . ,γn]T , C = [Cn+1
1 , . . . ,Cn+1

n ]T and

Π =


C1

1 C2
1 . . . Cn

1

0 C2
2 . . . Cn

2
...

... . . . ...

0 0 . . . Cm
m

 .

As the upper triangular matrix Π is non-singular, the above solution to γm is unique.�
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